Problem 9019
DSLR
문제
네 개의 명령어 D, S, L, R 을 이용하는 간단한 계산기가 있다. 이 계산기에는 레지스터가 하나 있는데, 이 레지스터에는 0 이상 10,000 미만의 십진수를 저장할 수 있다. 각 명령어는 이 레지스터에 저장된 n을 다음과 같이 변환한다. n의 네 자릿수를 d1, d2, d3, d4라고 하자(즉 n = ((d1 × 10 + d2) × 10 + d3) × 10 + d4라고 하자)
- D: D 는 n을 두 배로 바꾼다. 결과 값이 9999 보다 큰 경우에는 10000 으로 나눈 나머지를 취한다. 그 결과 값(2n mod 10000)을 레지스터에 저장한다.
- S: S 는 n에서 1 을 뺀 결과 n-1을 레지스터에 저장한다. n이 0 이라면 9999 가 대신 레지스터에 저장된다.
- L: L 은 n의 각 자릿수를 왼편으로 회전시켜 그 결과를 레지스터에 저장한다. 이 연산이 끝나면 레지스터에 저장된 네 자릿수는 왼편부터 d2, d3, d4, d1이 된다.
- R: R 은 n의 각 자릿수를 오른편으로 회전시켜 그 결과를 레지스터에 저장한다. 이 연산이 끝나면 레지스터에 저장된 네 자릿수는 왼편부터 d4, d1, d2, d3이 된다.
위에서 언급한 것처럼, L 과 R 명령어는 십진 자릿수를 가정하고 연산을 수행한다. 예를 들어서 n = 1234 라면 여기에 L 을 적용하면 2341 이 되고 R 을 적용하면 4123 이 된다.
여러분이 작성할 프로그램은 주어진 서로 다른 두 정수 A와 B(A ≠ B)에 대하여 A를 B로 바꾸는 최소한의 명령어를 생성하는 프로그램이다. 예를 들어서 A = 1234, B = 3412 라면 다음과 같이 두 개의 명령어를 적용하면 A를 B로 변환할 수 있다.
1234 →L 2341 →L 3412
1234 →R 4123 →R 3412
따라서 여러분의 프로그램은 이 경우에 LL 이나 RR 을 출력해야 한다.
n의 자릿수로 0 이 포함된 경우에 주의해야 한다. 예를 들어서 1000 에 L 을 적용하면 0001 이 되므로 결과는 1 이 된다. 그러나 R 을 적용하면 0100 이 되므로 결과는 100 이 된다.
입력
프로그램 입력은 T 개의 테스트 케이스로 구성된다. 테스트 케이스 개수 T 는 입력의 첫 줄에 주어진다. 각 테스트 케이스로는 두 개의 정수 A와 B(A ≠ B)가 공백으로 분리되어 차례로 주어지는데 A는 레지스터의 초기 값을 나타내고 B는 최종 값을 나타낸다. A 와 B는 모두 0 이상 10,000 미만이다.
출력
A에서 B로 변환하기 위해 필요한 최소한의 명령어 나열을 출력한다.
문제 링크
https://www.acmicpc.net/problem/9019
예제 입력 1
3
1234 3412
1000 1
1 16
예제 출력 1
LL
L
DDDD
solve
- D: D 는 n을 두 배로 바꾼다. 결과 값이 9999 보다 큰 경우에는 10000 으로 나눈 나머지를 취한다. 그 결과 값(2n mod 10000)을 레지스터에 저장한다.
- S: S 는 n에서 1 을 뺀 결과 n-1을 레지스터에 저장한다. n이 0 이라면 9999 가 대신 레지스터에 저장된다.
- L: L 은 n의 각 자릿수를 왼편으로 회전시켜 그 결과를 레지스터에 저장한다. 이 연산이 끝나면 레지스터에 저장된 네 자릿수는 왼편부터 d2, d3, d4, d1이 된다.
- R: R 은 n의 각 자릿수를 오른편으로 회전시켜 그 결과를 레지스터에 저장한다. 이 연산이 끝나면 레지스터에 저장된 네 자릿수는 왼편부터 d4, d1, d2, d3이 된다.
- bfs를 이용하여 위의 각 조건을 탐색한다.
- 큐에 다음 노드(숫자)와 현재까지 누적된 문자열(명령어)를 push하며 탐색을 하다가 원하는 수를 찾았다면 종료한다.
- 전형적인 bfs문제였다.
코드 설명
1 |
|